Работа с картами в гис интеграции. Геоинформационная система «Интеграция

1

В статье предложены постановка и решение задачи расширения функциональных возможностей геоинформационной системы военного назначения (ГИС ВН) «Интеграция», позволяющих отображать обстановку и результаты расчетных специализированных задач на электронной карте в автоматизированном режиме. Проведен анализ возможных путей решения указанной задачи, в ходе которого были рассмотрены три основных способа: создание прикладной задачи внутри ГИС «Интеграция»; разработка клиентского приложения для работы с сервером ГИС «Интеграция»; создание собственного приложения работы с картой на основе прямого доступа к ядру ГИС «Интеграция». Выделены основные достоинства и недостатки каждого подхода и обоснован выбор третьего. Предложен подход к проектированию программного модуля отображения обстановки и результатов решения задач на электронной карте, основанный на шаблоне проектирования MVC (Model-View-Controller), а также представлена структура модуля и его реализация на языке программирования C++ с использованием кроссплатформенной библиотеки Qt 4.7.0.

автоматизация

электронная карта местности

геоинформационные системы

1. Утекалко В.К., Бирзгал В.В., Вечер Н.А. Программное обеспечение геоинформационной системы «Интеграция МС». Руководство программиста. – Минск: Типография УО «ВА РБ». 131 c.

2. Утекалко В.К., Бирзгал В.В., Вечер Н.А. Геоинформационные системы военного назначения – Минск: Типография УО «ВА РБ». 257 c.

3. Лохвицкий В.А., Калиниченко С.В., Нечай А.А. Подход к построению системы автоматизированной интеграции информации в базу данных для её своевременной актуализации // Мир современной науки. Изд-во «Перо». – М., 2014. – № 2 (24). – С. 8-12.

4. Лохвицкий В.А., Петрова Л.Ю., Журавлева О.В. Программный модуль автоматизированного отображения обстановки и результатов решения задач с использованием электронных карт местности / Компьютерные технологии и информационные системы: Сборник научных трудов. Вып. 34. – Смоленск: ВА ВПВО ВС РФ, 2014. – С. 54-60.

5. ГОСТ 28195-99 «Оценка качества программных средств. Общие положения».

6. Шлее М. Qt 4: Профессиональное программирование на C++.СПб.: БХВ-Петербург, 2007. – 880 с.

В настоящее время информационные технологии оказывают все большее влияние на эффективность принятия решения командиром. Чем больше актуальной и достоверной информации об обстановке поступает, тем больше вариантов развития событий может быть рассмотрено и осуществлен оптимальный выбор.

Электронные карты местности позволяют структурировать и представить картографическую информацию в удобном виде. Для работы с электронными картами используются геоинформационные системы, анализ функциональных возможностей которых показал, что реализованные в них функции носят универсальный характер и не позволяют в полной мере решать специальные военные задачи в автоматизированном режиме.

1. Анализ основных направлений расширения функциональных возможностей ГИС «Интеграция»

Современные геоинформационные системы представляют собой сложные программные комплексы, как правило, состоящие из следующих компонент:

  • ГИС-ядро - это совокупность программных компонент, обычно оформленных в виде библиотеки или набора библиотек программных модулей, реализующих объектно-ориентированный подход при организации работы с электронной картой;
  • ГИС-приложение (задача) - это компьютерная программа, реализующая выполнение какой-либо функции на основе использования компонент ГИС-ядра конкретной ГИС.

Основными способами расширения функциональности ГИС «Интеграция» являются:

1. Создание задачи внутри ГИС «Интеграция».

2. Разработка клиентского приложения для работы с сервером ГИС «Интеграция».

3. Создание собственного приложения работы с электронной картой.

Рассмотрим основные особенности реализации указанных способов, их основные достоинства и недостатки.

1.1. Создание задачи внутри ГИС «Интеграция»

Данный подход предполагает разработку отдельного пользовательского ГИС-приложения (задачи) и последующую интеграцию его в установленную ГИС.

Особенности реализации:

  • задача запускается из ГИС «Интеграция». В модальном или немодальном режиме обрабатывает данные карт, открытых в ГИС;
  • используются функции интерфейса PanTask и MAPAPI.

Недостатки:

  • данный подход представляет решение каждой отдельной частной задачи в виде
    ГИС-приложения и не позволяет организовать решение более сложных задач;
  • интерфейс работы с картой ограничен возможностями ГИС и не позволяет организовать интерактивный режим.

Пример организации работы пользовательского программного модуля в среде ГИС «Интеграция» представлен на рис. 1.

Рис. 1. Схема взаимодействия прикладной задачи с ГИС «Интеграция»

Можно сделать вывод, что рассмотренный способ может применяться при решении частных расчетных задач ограниченной сложности. Для решения задачи автоматизированного нанесения обстановки и результатов решения задач на электронную карту использование данного способа представляется нецелесообразным.

1.2. Разработка клиентского приложения для работы с сервером ГИС «Интеграция»

Другим способом взаимодействия с электронной картой является вариант взаимодействия через программный интерфейс, представляемый геоинформационной системой. В ГИС «Интеграция» такое взаимодействие организовано на основе специального протокола с использованием клиент-серверной архитектуры (рис. 2).


Рис. 2. Схема взаимодействия прикладной задачи с ГИС «Интеграция» по протоколу взаимодействия для прикладных задач

Особенности реализации:

  • программа работает в собственном окне и не имеет прямого доступа к картографическим данным. Для получения данных карты и передачи результатов программа обращается как клиент к ГИС «Интеграция»;
  • доступ к серверу ГИС «Интеграция» осуществляется через сокеты TCP по протоколу взаимодействия.

Недостатки:

  • функционал модуля работы с картой ограничен возможностями протокола взаимодействия ГИС «Интеграция», набор команд которого существенно меньше функциональных возможностей ГИС-ядра;
  • версия протокола взаимодействия ГИС «Интеграция» имеет слабую степень проработки, встречаются ошибки и не выполняющиеся команды, исправленные в более поздних версиях ядра ГИС.

Таким образом, ограниченность возможностей протокола взаимодействия ГИС «Интеграция» не позволяет реализовать требуемую функциональность в программном модуле автоматизированного нанесения обстановки и результатов решения задач на электронную карту.

1.3. Создание собственного приложения работы с электронной картой

Данный подход предполагает разработку отдельного приложения, работающего непосредственно с ядром ГИС «Интеграция» (mapacces.dll и mapacces.so).

Особенности реализации:

    Программа работает в собственном окне;

    Независимо от ГИС «Интеграция» выполняет операции по обработке картографических данных;

    Установка ГИС «Интеграция» в систему не требуется;

    В программе существует возможность реализовать необходимую функциональность при работе с картой, которая ограничена только возможностями ядра ГИС.

Недостаток: сложность реализации, связанная с необходимостью разработки интерфейса взаимодействия модуля визуализации с функциями ядра ГИС «Интеграция» (интерфейса MAPAPI).

Учитывая рассмотренные выше особенности и недостатки различных подходов к разработке модуля визуализации, наиболее перспективным для решения специализированных задач с использованием электронных карт местности представляется третий подход, заключающийся в создании собственного приложения на основе функций ядра ГИС «Интеграция».

2. Проектирование программного модуля

Проектирование программного модуля осуществлялось на основе составного шаблона проектирования Model-View-Controller (MVC), позволяющего отделить логику работы программы от способов представления результатов. Структура модуля представлена на рис. 3.

Рис. 3. Обобщенная структура модуля работы с электронной картой

Поскольку модуль предназначен для автоматизированного отображения обстановки и результатов решения задач на электронной карте, то он должен удовлетворять следующим требованиям:

    Иметь удобный и понятный пользователю интерфейс;

    Возможность получать данные из внешней базы данных;

    Возможность использовать функции ядра ГИС.

Вариант отображения результатов решения расчетных задач на примере задачи целераспределения представлен на рис. 4.

Рис. 4. Пример отображения результатов целераспределения

Интерфейс разработанного программного модуля дополнительно позволяет выводить детализированную информацию об объектах, представленных на электронной карте, и результатах решения расчетных задач.

Заключение

В настоящей работе кратко представлены результаты проектирования и разработки программного модуля автоматизированного отображения обстановки и результатов решения задач с использованием электронных карт местности.

Модуль позволяет автоматизировать процессы нанесения обстановки на карту, расчёта возможности применения формирований для нанесения удара, расчёта эффективности применения средств поражения. Использование разработанного модуля позволит оперативно реагировать на резкое изменение обстановки и вносить коррективы в процессе целераспределения, а также подготовить несколько вариантов целераспределения для различных вариантов обстановки.

Рецензенты:

Паршуткин А.В., д.т.н., доцент, профессор кафедры комплексов и средств информационной безопасности Военно-космической академии имени А.Ф. Можайского, г. Санкт-Петербург.

Басыров А.Г., д.т.н., доцент, начальник кафедры информационно-вычислительных систем и сетей Военно-космической академии имени А.Ф. Можайского, г. Санкт-Петербург.

Библиографическая ссылка

Лохвицкий В.А., Войцеховский С.В., Девяткин А.М., Сафонов В.М. АНАЛИЗ ПУТЕЙ АВТОМАТИЗАЦИИ ПРОЦЕССА НАНЕСЕНИЯ ОБСТАНОВКИ НА ЭЛЕКТРОННУЮ КАРТУ ГИС «ИНТЕГРАЦИЯ» // Современные проблемы науки и образования. – 2014. – № 6.;
URL: http://science-education.ru/ru/article/view?id=16810 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

«Сайт разработан мной для публикаций сведений о новейших разработках в области использовании Геоинформационных систем (ГИС). В настоящее время я работаю в области применения ГИС и страницах сайта мною будут размещаться материалы по вопросам внедрения и использования ГИС в системах управления. Все желающие опубликовать свои материалы по данной теме на странице сайта могут это сделать после регистрации».

С уважением Иванов Василий!

Наиболее известные ГИС

ArcInfo - разработка американского Института исследований систем окружающей среды (ESRI);

Arc View GIS - специализированный программный комплекс разработки ESRI;

Inter Graph - разработка фирмы InterGraph (США);

Mapinfo - разработка одноименной фирмы;

Arc CAD - разработка ESRI, представляющая собой слияние САПР и ГИС в едином программном продукте;

Geo Draw - разработка центра геоинформационных исследований Института Географии (Российская Федерация);

Win GIS - многофункциональный комплекс, разработанный австрийской фирмой PRO CIS;

ТАЛКА - Нева - разработка Военно-топографического управления Генерального штаба Вооруженных Сил Российской Федерации;

KIKS - программный комплекс интерактивной структуризации данных, разработанный НАН Беларуси;

Карта - построенное в картографической проекции, уменьшенное, обоб­щенное изображение поверхности Земли или её части, показывающие размеще­ние, состояние и связи природных и искусственных объектов и явлений в опре­деленной системе условных знаков .

Географическая информационная система (ГИС) - это современная компьютерная технология для картирования и анализа объектов реального мира.

Топографические карты составляются по результатам съемок территории и отличаются детальностью изображения местности. В основу разграфки топокарт положен лист масштаба 1:1000000. Для таких карт изображение земной поверхности разбивается на 60 колонн, начиная от Гринвича через 6 градусов. Каждая колонна нумеруется цифрами от 1 до 60 (с запада на восток от 180 гра­дусов).

Параллелями через 4 градуса поверхность делится на ряды, которые нуме­руются буквами латинского алфавита (от экватора). Например, лист на котором показывается город Москва, имеет номенклатуру N-37 (52-56 широты и 36-42 долготы).

Цифровая модель местности (ЦММ) - представление (модель) территории в виде представленной в компьютере совокупности связанных пространственными то­пологическими отношениями и связями целостных пространственных объектов.

Объект - средство структурирования реальности, обладающее следующими свойствами:

Объект состоит из взаимосвязанных элементов (частей). Связи частей объекта между собой сильнее связей с другими объектами - внешними по отношении к данному;

Элементы объекта не могут иметь независимое друг от друга "время жиз­ни", т.е. они создаются и уничтожаются одновременно кроме случаев ре­структуризации объекта, не нарушающих его целостность;

К объекту адресуются как к единому целому, а не путем индивидуальной адресации его отдельных частей;

С объектом связываются допустимые типы преобразований, не позво­ляющие субъекту выполнять с ним операции другого типа.

Цифровая карта (ЦК) - отображение ЦММ в памяти компьютера в определенном масштабе представления с использованием неко­торого символьного языка. Одной ЦММ может соответствовать множество ЦК некоторого масштабного ряда.

Общими требованиями к ЦК являются.

В рамках ГИС-технологии один и тот же слой объектов может образовы­вать объекты, состоящие из любых геометрических примитивов и их со­вокупностей;

Векторные объекты ЦК должны отображаться в соответствии с требова­ниями Роскартографии к "бумажным" картам;

Ошибка положения контуров объектов на ЦК относительно исходного географического материала не должна превышать 0,2 мм;

Все растровые изображения на ЦК должны быть объединены в единое растровое поле;

Координаты на ЦК должны иметь значения в местной системе координат;

Слои объектов должны соответствовать классам объектов, в соответствии с "Условными знаками для топографических планов" масштаба М 1:2000 и М 1:500, а также в соответствии с "Классификатором объектов на ЦК".

ГИС «Панорама»

Панорама - система, разработанная Военно-топографическим управлением ГШ ВС РФ совместно с 29 НИИ МО.

Позволяет обрабатывать: векторные карты;

растровые изображения местности (растровые карты);

матричные данные о местности.

Геоинформационная система, предназначенная для создания и редактирования электронных карт, решения типовых прикладных задач и разработки специализированных ГИС-приложений в среде Windows.

Поддержка различных проекций, систем координат, многослойных карт;

Импорт данных из обменных форматов – SXF, DXF/DBF, MIF/MID, Shape, S57/S52, GRD, TIFF, PCX, BMP и других;

Разработка прикладных задач на C, C++, Pascal;

Исходные тексты системы, документация для разработчика;

- поддержка многопользовательской работы в сети с одним экземпляром карт, ведение журнала транзакций;

ГИС Интеграция – разработана на основе системы «Панорама» в ракетно-космической корпорации "Энергия" им. С.П. Королева.

Представление электронной карты на дисплее является многослойным и может создаваться путем комбинирования растрового представления карт и фо­томатериала, векторного представления объектов местности, матричного пред­ставления различных свойств местности (матрица высот, матрица экологически опасных участков местности, матрица проходимости местности и т. д.) и поль­зовательских данных, выводимых на карту средствами интерфейса Windows.

Пользовательские задачи могут решаться в системе следующими способами:

С применением только одного программного комплекса ГИС "Интегра­ция" для решения информационно-справочных и расчетных задач, в том числе, с использованием различных реляционных СУБД и прикладных программ Windows;

Путем расширения функциональных возможностей ГИС за счет разра­ботки новых компонент на основе сред программирования С и С++;

С применением отдельных компонент системы, реализованных в виде динамических библиотек (DLL), для расширения функциональных воз­можностей существующих прикладных систем, в том числе, основанных на различных СУБД, электронных таблицах, системах автоматизирован­ного проектирования, графических редакторах и т. д.

ГИС "Карта 2005", разработанная КБ "Панорама", принята на снабжение ВС РФ приказом Министра обороны РФ N 722 от 15 июля 2009 года. Новая версия ГИС, разработанная в КБ "Панорама", - "Карта 2011" является специализированным приложением, которое в составе сетецентрической системы управления обеспечивает обработку данных из различных источников.

Содержит:

Средства обработки данных с навигационных приборов GPS и ГЛОНАСС;

Наиболее современное и высокоточное оборудование российской разработки может быть подключено с применением комплекса “GEO-RTK“, разработанного "Российским институтом радионавигации и времени";

Средства обработки данных с беспилотных летательных аппаратов; первичная обработка данных выполняется в комплексе Фотомод, разработанного компанией Ракурс;

Данные с геодезических приборов различного назначения;

Цифровые карты, снимки Земли, матрицы высот, размещенные на удаленных серверах пространственных данных под управлением ГИС Сервер (разработка КБ “Панорама”);

Интернет-ресурсы карт, снимков, матриц публикуемых на сайтах Google, Yandex, Digital Globe, OpenStreet по специализированным http-протоколам;

- цифровые карты, снимки Земли, матрицы высот доступные через web-сервисы по стандартам OGC WMS, WFS, WCS

Для реализации распределенной ГИС в составе каждого узла должен быть установлен ГИС Сервер на платформе Windows, Linux или Solaris на процессорах с 32 или 64-разрядной архитектурой. ГИС Сервер позволяет устанавливать любое число соединений.

На компьютере с Windows XP и 4 Гб памяти обеспечивается одновременное подключение порядка 1 000 клиентов. Стационарные клиенты могут использовать компьютеры на платформах Windows или Linux (МС ВС и другие) и ГИС "Карта 2011". Мобильные клиенты могут использовать любые платформы, поддерживающие работу web-браузеров , либо работу Мобильной ГИС , работающей с картами в автономном режиме с передачей только навигационных данных.

Для персональных навигационных устройств, разработанных в ОКР "Карта" и ОКР "Перспектива-В" навигационные карты записываются на флеш-карту объемом 250 Мбайт с графом дорог, маршрутами, целевыми точками и другими данными.

Програма

«Формирование графических оперативных (боевых) документов, разрабатываемых в органах военного управления»

«РОКАДА»

Предназначена для нанесения оперативной (тактической) обстановки на электронные карты, её ведения, редактирования, сохранения, размножения, а также обмена графической и текстовой информацией на едином картографическом фоне в звене подразделение – соединение – объединение (воинская часть) в режиме реального времени.

процессор – Pentium 700 МГц;

Оперативная память – 256 Мбайт;

Монитор с разрешением 800 x 600;

Накопитель на жёстком диске ёмкостью 80 Гбайт;

Средства доступа в ЛВС

ОС Windows .

В качестве «ГИС» во внутренних войсках стал использоваться графический редактор Corel Draw . На отсканированной или отрисованной подложке на отдельных слоях наносилась обстановка. Это задало стандарт оформления карт.

ГИС «Гармония» предназначена для обеспечения реализации функций графического интерфейса по ведению оперативной обстановки на электронных картах, для создания интегрированных систем типа ГИС+СУБД на основе взаимодействия между графическими данными электронных карт и атрибутивными данными, содержащимися во внешних базах данных, а также для документирования картографической информации и оперативной обстановки.

Внешним форматом электронных карт для программы является обменный формат ВТУ ГШ SXF 4.0, использующий классификатор картографической информации, утвержденный ВТУ ГШ (Москва-1999).

Формуляр атласа (расширение.fra). Это файл, где описываются состав атласа, классификаторы, характеристики атласа, хранится привязка к сетке ко-ординат, рамка атласа и т.д. Для загрузки атласа электронных карт пользова-тель выбирает именно этот файл с диска.
Номенклатурный лист электронной карты (расширение.dim). Этот файл содержит метрику, семантику и описание картографических объектов ли-ста электронной карты.
Классификатор электронных карт (расширение.cls). Этот файл содер-жит описание состава возможных объектов листов ЭК и их характеристик, пра-вила их отображения.
Лист оперативной обстановки (расширение.dim). Этот файл содержит метрику, семантику и описание объектов оперативной обстановки.
Классификатор оперативной обстановки (расширение.cls). Этот файл содержит описание состава возможных объектов оперативной обстановки и их характеристик, правила их отображения.

Автоматизированная информационная система МЧС России

АИС МЧС предназначена для ведения оперативной обстановки и справочной информации в автоматизированной информационной системе МЧС России на основе использования Web-технологии и карт текущей обстановки.

Реализовано в виде 3-х уровневой иерархической системы Web-слайдов, представляющих собой карты текущей обстановки и презентации, переведенные в формат html и связанные в структурированную систему с использованием гиперссылок.

Разработчик - Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций (ВНИИ ГОЧС).

Геоинформационная система "Экстремум" предназначена для решения задач по предупреждению и ликвидации ЧС природно-техногенного характера в глобальном масштабе.

На базе ГИС "Экстремум" созданы:

Территориально-распределенная система приема и обработки авиационно-космической информации;

Система оперативно - диспетчерской службы (ОЧОДУ);

Система мониторинга и прогнозирования ЧС.

В ГИС имеется несколько блоков. В блоке базы данных соединены картографические и семантические данные в виде различных карт. Есть блок математических моделей, с их помощью прогнозируют обстановку, оценивают опасности природного или техногенного воздействия, рассчитывают поля этого воздействия, ущерб от него, наконец, вырабатывают план конкретных действий. В системе присутствуют блоки оценки последствий, предназначенные для оптимизации мероприятий по эффективному реагированию, и блок выходных данных и документирования. Созданные модели позволяют оценить последствия землетрясений, наводнений, лесных пожаров, аварий на АЭС, выбросов химически и радиационно опасных, а также загрязняющих веществ, разрушения плотин и прорывов нефтепроводов.

ГИС "Оператор"

В Вооруженных силах РФ внедрена новая географическая информационная система военного назначения "Оператор»

Система предназначена для изучения и оценки свойств местности, информационного обеспечения учений и командно-штабных тренировок, ведения дежурных и оперативных карт и схем, автоматизации процессов управления войсками, создания виртуальных 3D-макетов местности, информационного обеспечения боевого применения высокоточного оружия, навигационного обеспечения транспортных средств и других спец задач.

maps. Google.com

Схематические карты всей планеты от компании «Google». Набор приложений, построенных на основе бесплатного картографического сервиса и технологий, предоставляемых компанией «Google».

«Карты Google» является лидером среди картографиче­ских сервисов. В первое время американской компании пришлось выдержать яростную критику со стороны спецслужб многих государств мира, которые были недовольны появлением в свободном доступе спутниковых снимков. Есть вид «гибрид» = спутниковый снимок с надписями

Фотовидео (просмотр улиц) со стороны дороги, вращение на 360 градусов, наклон вниз, вверх. Спутниковые снимки высокого разрешения, их вращение, наклон в перспективу (очень интересно - вид с птичьего полета, но - в Google Chrome), легкость масштабирования (вращением «колесика» мышки). Копировать напрямую не дает. Работает и на планшете типа Samsung GT - P 7500 Galaxy Tab 10.1 16 Гб 3 G Black , но без «птичьего полета», а «просмотр улиц» работает!

maps.yandex.ru

«Яндекс.Карты»

Конкурентоспособный картографический сервис, без которого многие пользователи Рунета уже просто не могут обойтись, – настолько он удобен и функционален. Для ПК в качестве клиента может использоваться любой современный интернет-браузер – особых технических требований не предъявляется. Спутниковые снимки до масштаба 10 м. Есть вид «гибрид» = снимок с надписями

Программное обеспечение WebMap - © ЗАО «Резидент» (http://www.resident.ru/ ).

Спутниковые данные :

http://www.scanex.ru/ ), Includes IRS Data © ANTRIX Corporation Ltd., Includes material © European Space Imaging GmBH. © DigitalGlobe, Inc.

обработка © ООО ИТЦ « СКАНЭКС » (http://www.scanex.ru/ ), Includes "WorldView-2" Data © DigitalGlobe, Inc. :// www . bing . com / maps /

Карты Бинг или Bing Maps это картографический онлайн сервис, предоставляемый компанией Microsoft . На картах Bing Maps пользователи могут найти и посмотреть топографические карты многих стран и городов мира. Представленные карты включают информацию о важных объектах города и многое другое.

Стандартными прикладными протоколами обмена геопространственными данными являются протоколы, разработанные международной организацией OGC и принятые в качестве международных стандартов серии ISO 19100:
Web Map Service (WMS) – спецификация интерфейса web-сервиса, выдающего клиентскому приложению растровые изображения местности.
Web Feature Service (WFS) – спецификация интерфейса web-сервиса, возвращающего набор векторных объектов. Это дает клиентскому приложению возможность выполнять редактирование объектов и их характеристик.
Web Coverage Service (WCS) – спецификация интерфейса web-сервиса ориентированная на передачу "покрытий" – сплошных распределений какого-либо признака в пространстве. Она позволяет дополнить изображения WMS слоями нового типа. Например, данными о рельефе, маскировочными свойствами местности, проходимости местности для различных видов техники, зонами видимости и так далее.

Геоинформационное картографирование. Система электронных карт. Карты электронные топографические. Общие требования
ГОСТы о ГИС

Дополнительно и подробно «Геоинформационные системы военного назначения» можно было посмотреть на http://www.marshal-group.com/geoinformacionnie-sistemi.html , в том числе и про ГИС Интеграция, решение измерительных задач, определение зон видимости и других характеристик местности, построение зоны видимости по матрице высот в виде растрового изображения, трехмерное изображение местности.

Таким образом, обзор показывает, что у нас есть вполне конкурентоспособные ГИС, отвечающие большинству современных требований, например ГИС «Карта 2011», и в тоже время есть что и как совершенствовать. Главное, как мне кажется, отделить их от аппаратной зависимости и сделать кроссплатформенными, в том числе, по факту, действующими на платформах Windows и Linux (МС ВС).

ГИС «Интеграция»

ГИС «Интеграция» позволяет решать различного рода статистические и расчетные задачи, выполнять оверлейные операции с использованием данных, полученных с электронной карты, представленной в виде векторной, растровой или матричной электронной карты, а также в виде совокупности перечисленных данных.

Для этой цели в ГИС «Интеграция» существует встроенная система выполнения расчетов с использованием электронной карты, которая активизируется при выборе пункта Расчеты по карте в меню Задачи

Система выполнения расчетовупpaвляется с помощью панели, которая размещена в правой части главного окна системы.

Панель управления

Построение зоны вокруг объекта;

Построение зоны вокруг выделенных объектов карты;

Создание объектов пересечением выделенных и выбранного объектов карты;

Вспомогательная панель Работа с выделенными объектами;

Определение площади объекта;

Справка о площади однотипных объектов;

Определение площади многоугольника;

Вспомогательная панель Длина и расстояние;

Вспомогательная панель Работа с матрицей высот;

Расчет координат;

Отображение результатов.

Главная панель расчетов по карте включает в себя набор кнопок-пиктограмм, каждая из которых соответствует отдельному режиму или целой группе режимов выполнения расчетов.

При нажатии на кнопку, соответствующую отдельному режиму обработки, происходит активизация данного режима.

При нажатии на кнопку, соответствующую группе режимов, на экране появляется вспомогательная панель управления с набором кнопок-режимов.

Рассмотрим некоторые режимы.

Определение площади объекта

Данным режимом обpaбaтывaются только площaдные объекты.

После выбоpa объектa в окно pезультaтов выводится его площадь без учетa площaди подобъектов.

Статистическая справка по объектам одного типа

Данный режим предназначен для получения минимальной статистической справки по однотипным объектам электронной карты.

Данным режимом обрабатываются только площадные объекты электронной карты.

Выбор объектов другого типа блокируется программой.

Для указания типа объектов, по которым следует собрать статистическую справку необходимо выбрать объект данного типа на электронной карте. После завершения процесса сбора информации на экране появляется информационное окно с результатом обработки.

Определение площади многоугольника

Дaнныйpежим позволяет опpеделить площaдь многоугольникa, постpоенного опеpaтоpом.

Постpоение многоугольникa пpоизводится путем выбоpa опоpных точек нaжaтием левой клaвиши мыши. Между двумя последовaтельно выбpaнными точкaми стpоится пpямaя. Многоугольник всегдa остaется зaмкнутым. Используя режим редактора Сохранение условного объекта для построенной линии можно выбрать классификационный код (условный знак) и записать как объект карты.

После нaжaтия Левая кнопка мыши - Правая кнопка мыши постpоение многоугольникa считaется зaконченным, его окончaтельнaя длинa выводится в окно pезультaтов.

Для отмены нaчaтого пpоцессa или чтобы погасить построенный многоугольник следует нажать комбинацию клавиш Ctrl-Правая кнопка мыши.

Вспомогательная панель Длина и Расстояние

Определение длины (периметра) объекта

Дaнным pежимом обpaбaтывaются только линейные и площадные объекты.

После выбоpa объектa в окно pезультaтов выводится его длинa (периметр).

Длина произвольной линии

Дaнный pежим позволяет опpеделить длину ломaной линии, постpоенной опеpaтоpом.

Постpоение ломaной пpоизводится путем выбоpa опоpных точек при нaжaтии левой клaвиши мыши. Между двумя последовaтельно выбpaнными точкaми стpоится пpямaя. Нажатие клавиши Backspace приводит к удалению последней введенной точки.

В процессе выбора опорных точек возможно использовать фрагменты существующих объектов карты.

Для этого необходимо нажать правую кнопку мыши и выбрать из появившегося меню пункт: Скопировать участок, не ограниченный узлами. Затем выбрать объект карты и отметить тремя точками фрагмент, включаемый в ломаную линию.

После нaжaтия Левая кнопка мыши - Правая кнопка мыши постpоение ломaной считaется зaконченным, ее длинa выводится в окно pезультaтов. Используя режим редактора Сохранение условного объекта для построенной линии можно выбрать условный знак и записать как объект карты.

Если к карте добавлена матрица высот и линия проходит через нее полностью или частично, то длина построенной ломаной линии определяется с учетом рельефа.

Длина участка объекта карты

Дaнным pежимом обpaбaтывaются только линейные и площaдные объекты.

После выбоpa объектa пpоизводим выбоp учaсткa по тpем точкaм, если это площадной объект и по двум точкам, если линейный.

После выбоpa тpетьей точки отpезкa измеpяемый отpезок подсвечивaется, в окно pезультaтов выводится его длинa.

Для отмены нaчaтого пpоцессa следует нажать комбинацию клавиш Ctrl - Правая кнопка мыши.

Расстояние до объекта

Данный режим позволяет определить расстояние от заданной точки до выбранного объекта.

После выбора объекта следует отметить любую точку на карте используя левую кнопку мыши.

После нaжaтия левой кнопки мыши расстояние выводится в окно pезультaтов. Для отмены нaчaтого пpоцессa следует нажать комбинацию клавиш CTRL- Правая кнопка мыши.

Расстояние между объектами

Данный режим определяет кратчайшее расстояние между двумя объектами карты и отображает результат в строке сообщений.

В начале работы выбирается основной объект. Затем перебором выбираются дополнительные объекты, до которых необходимо определить кратчайшее расстояние.

Расстояние определяется от существующей точки метрики основного объекта до псевдоточки (не существующей) дополнительного.

Для смены основного объекта необходимо отменить его выбор (комбинация клавиши Ctrl и правой кнопки мыши) и выбрать новый.

Трехмерное изображение местности

В данном окне диалога представлено трехмерное изображение заданного участка местности, определяемое открытыми матрицами высот.

Для отображения трехмерной модели другого участка местности необходимо нажать кнопку Трехмерная матрица в панели Работа с матрицей и выбрать участок местности в окне с картой, содержащей открытые матричные данные. Закрытие диалога при этом необязательно. Изображение динамически меняется при изменении параметров визуализации: высоты модели, угла поворота, угла наблюдения, шага сетки.

Определение длины объекта с учетом рельефа

Данным режимом обрабатываются только линейные и площадные объекты. Выбор объекта возможен, если к карте добавлена матрица высот, либо точки объекта характеризуются координатами на местности и высотой.

Длина объекта определяется с учетом рельефа.

Полученная длина объекта выводится в окно результатов.

Определение площади указанной области с учетом рельефа

Режим производит вычисление площади указанной области

Построение зоны затопления

Данный режим позволяет определить зоны затопления на карте, используя информацию из матрицы высот.

Название матрицы для построения зоны затопления выбирается из списка Матриц высот.

Результаты построения сохраняются в матричной или в пользовательской карте.

Для построения зоны затопления необходимо выбрать объект на карте и указать точки, для которых вводится уровень подъема воды, нажатием левой кнопки мыши.

Координаты указанных точек отображаются в диалоговом окне Построение зоны затопления.

Уровень подъема воды (числовые значения в метрах) должен ввести пользователь.

Построение производится в пределах заданного участка гидрографии. Пользователь выбирает на карте участок реки путем указания двух точек для линейных объектов и трех - для площадных. Если необходимо проанализировать всю реку, состоящую из нескольких объектов карты или несколько взаимосвязанных объектов, то необходимо предварительно создать объединенный объект.

В дальнейшем по матрице качеств можно будет выполнить трехмерную визуализацию, как самостоятельной модели (для оценки уровня затопления), так и совместно с матрицей высот (пространственная оценка) и выполнить динамическую оценку зон затопления, построив матрицы на различные временные срезы. Имея объект местности, показывающий зону затопления, можно провести статистическую оценку объектов, попадающих в зону затопления.

ГИС как интегрированная информационная система

Рассмотрев информационные системы с пространственной локализацией данных, перейдет к изучению геоинформационных систем, которые появились как практическая потребность обобщения таких систем на основе интеграции.

Этот подход позволяет определить ГИС, как многоаспектную АИИС с пространственной локализацией данных. ГИС обобщает в себе общие свойства информационных систем этого класса и является развитием таких систем .

В связи с нечеткой терминологией, употребляемой рядом авторов, и в первую очередь, географов, следует уточнить некоторые понятия.

При изучении геоинформационных систем не следует путать два ряда родственных понятий. Первый ряд понятий образует общие термины, связанные с геоинформатикой и ГИС: геоинформатика, геоинформационная система, геоинформационная технология, геоинформационное моделирование, геоинформационный объект, геоинформационные данные.

Второй ряд понятий образует термины, связанные с географией: география, географическая информационная система, географическая технология, географическое моделирование, географический объект, географические данные.

Эти два ряда понятий не эквивалентны. Замена понятий геоинформатики географическими терминами - ошибочна. В некоторых случаях эти понятия близки, но имеют и различия. Например, геоинформационная система (ГИС) является более общим понятием по отношению к географической информационной системе (ГИС). Геоинформационная система в общем случае является интегрированной системой, направленной на поддержку принятия решений в различных предметных областях.

ГИС как географическая информационная система является специализированной системой. Она функционально направлена на решение задач в области географии.

ГИС как геоинформационная система является обобщением автоматизированных информационных систем с пространственной локализацией данных, большинство из которых к географии и картографии отношения не имеют.

Следует различать ГИС-систему и ГИС-технологию. ГИС-технология - это технология обработки информации, включающая применение систем, которые к ГИС не относятся. Сфера действия ГИС-технологий шире, чем ГИС-систем. Это обусловлено тем, что ГИС как инструментальная система работает с унифицированными данными, а ГИС-технологии включают сбор неунифицированных разнородных данных, их первичную обработку, унификацию, последующую обработку и представление с помощью ГИС-систем.

В табл. 2.1 приведены технологии и методы, которые послужили основой организации технологических процессов в ГИС.

Таблица 2.1

Связь технологий автоматизированных систем с технологиями ГИС

Название АС

Исходная технология

Порожденная ГИС-технология

Автоматизированный сбор первичных данных

Автоматизированный сбор первичных данных и их обработка с целью унификации

"Сквозные технологии" сбора данных в полевых условиях

Построение пространственных объектов на основе теоретико-множественных отношений между объектами

Построение пространственных объектов на основе комбинирования объектов

Графическое редактирование объектов для создания новых или обновления

Декомпозиция графического объекта по тематическим признакам на тематические слои

Декомпозиция графического объекта по тематическим признакам на слои

Декомпозиция графического объекта по топологическим признакам на слои (точечные, векторные, полигональные)

Композиция объекта в виде проекта

Композиция карты или цифровой модели в виде проекта

Декомпозиция графического объекта на базовые графические примитивы

Применение библиотек условных знаков для отображения на карте точечных элементов

Создание, модификация стилей текста, линий, полигонов для визуализации графики

Использование механизма координатной сетки для привязки объектов и определения их взаимного положения

Использование механизма географической сетки для привязки объектов и определения их взаимного положения

Использование атрибутов объектов для изменения визуализации при изменении масштаба

Использование атрибутов объектов для генерализации картографических объектов при изменении масштаба

Построение тематических сводных таблиц на основе запросов

Построение тематических карт на основе запросов

Применение методов деловой графики для визуализации статистических данных на картах

Присвоение атрибутов одной таблицы атрибутам другой таблицы на основе сравнения сходных столбцов

Геокодирование

Применение интерфейса ODBC для связи с удаленными базами данных

Применение интерфейса ODBC для связи ГИС с внешней базой данных

Кодирование информации в виде квадротомического дерева

Векторизация растровых изображений

Автоматизированное распознавание линейных объектов

Автоматизированная трассировка линейных и ареальных объектов

Применение методов деловой графики для визуализации статистических данных

Применение методов деловой графики для визуализации статистических данных на тематических картах

Группирование и разгруппирование объектов

Геогруппирование объектов

Применение дополнительных параметров для образования новых объектов на основе существующих

Построение буферных зон

Применение набора форм для формирования отчетной документации

Создание и применение набора форм для формирования отчетной документации

Совмещение экономической информации с позиционными данными для пространственного анализа и оптимизации экономических задач

Принятие решений на основе оптимизации аналитических решений экономических и управленческих задач

Поддержка принятия решений на основе оптимизации аналитических решений, дополненных визуальным представлением информации в виде карт и деловой графики

Решение маркетинговых задач на основе применения геоинформационных систем.

Решение маркетинговых задач на основе автоматизированных информационных систем

Решение маркетинговых задач на основе дополнительных возможностей геоинформационного моделирования. Геомаркетинг

Разработка классификаторов для упорядочения хранимой информации

Применение методов статистического анализа табличных данных

Ограниченное применение методов статистического анализа табличных данных

Широкое применение баз данных

Ограниченное применение баз данных

Сокращения означают:

Автоматизированные системы

Автоматизированные системы научных исследований

Системы автоматизированного проектирования

Автоматизированные системы обработки экономической информации

Автоматизированные системы управления

Маркетинговые информационные системы

Системы компьютерной графики

Статистические информационные системы

Системы управления базами данных

Системы обработки изображений

Как показывает сравнительный анализ в табл. 2.1 большинство технологий и методов ГИС заимствовано полностью или частично из других

технологий или являются развитием уже существовавших технологий других систем с пространственной локализацией данных .

Анализ табл. 2.1 подтверждает, что ГИС является современным обобщением АИИС с пространственной локализацией данных.

Наибольшее число важнейших технологий ГИС заимствовано из САПР (см. табл. 2.1). Это дает основание утверждать, что основой интеграции технологий в ГИС является технология САПР.

Основой связи между объектами ГИС является позиционирование в системе координат земной поверхности. Это дает основание говорить о том, что основой интеграции данных в ГИС являются географические координаты.

Одним из основных отличий ГИС от других АС с пространственной локализацией следует считать применение теории графов для создания топологии линейных и ареальных объектов и использование криволинейных систем координат и картографических проекций для связи пространственных объектов с точками земной поверхности.

Основу процессов обработки в ГИС составляет цифровое моделирование. Оно позволяет осуществлять векторно-топологическое моделирование, буферизацию объектов, анализ сетей, построение цифровых моделей местности и т.д.

В инструментальных системах поддерживается набор моделей (цифровых представлений) пространственных данных (векторная, топологическая и нетопологическая модели, квадродерево, растровая модель, линейные сети) для ввода данных, их анализа, моделирования и представления (Цветков, 1998).

ГИС нового поколения отличает ориентация на пользовательские модели данных с учетом предметной области и особенностей приложений. Их модели данных определяются классами объектов, наборами атрибутов, расширенными возможностями реализации запросов и операций над объектами по сравнению с предыдущим поколением. Они позволяют обрабатывать геоинформационные данные по распределенной технологии, что повышает гибкость и производительность систем.

Как правило, модули и приложения образуют единую пользователь скую среду инструментальных ГИС. К ядру подключаются тематически ориентированные модули, дополняемые приложениями для управления моделями данных, построения цифровых моделей, обработки растровых изображений, выполнения расчетов, анализа и проектирования, организации интерфейсов. При этом имеется возможность подключения модулей, разработанных конкретным пользователем. Это повышает универсальность систем и эффективность при решении нетиповых задач.

Возрастает значение модулей для трехмерного (3D) проектирования, генерации планов, автоматического документирования проектов и выбора оптимальных вариантов. Инструментальные ГИС-технологии могут включать набор модулей для формирования и ведения банков земельных данных о состоянии жилого и нежилого фондов, информационного обеспечения администрации го рода, ведения кадастра недвижимости, анализа, оценки и планирования городских территорий, управления коммунальным хозяйством и т.д.

Разнообразие ГИС порождает необходимость их анализа и выбора для решения практических задач в конкретной области. В данной книге освещена эта проблема. В ней дается анализ ГИС как современной информационной системы и приводятся варианты решения практических задач в управлении, экологии, контроле и учете и т.д.

Многие разработчики автоматизированных систем (фактически ГИС) не совсем уверенно могут дать ответ на вопрос, относятся эти системы к классу ГИС или нет. Это обусловлено разнообразием технологий и даже терминологией многочисленных существовавших ранее (и существующих теперь) систем сбора и обработки пространственно-временных данных (Цветков, 1998).

Сами ГИС также могут значительно отличаться друг от друга по возможностям, основным технологиям обработки данных (и их числу), по требуемой технической конфигурации, вычислительным ресурсам и т.д. Например, в одних инструментальных пакетах ГИС термин “дуга” заимствован из теории графов и служит для обозначения полилинии, в других пакетах -- полилинию называют “полилинией”, а дугу --“дугой”.

В силу этого особую актуальность приобретает осуществляемая на основе методов системного анализа обобщенная оценка типичных признаков принадлежности информационной системы к классу ГИС и ее отличительных свойств.

Необходимо подчеркнуть, что ГИС относится к классу интегрированных систем . Современные тенденции создания интегрированных автоматизированных систем (в том числе ГИС) включают разные аспекты интеграции -- интеграцию данных, технологий и технических средств (Цветков, 1998).

Интеграция данных заключается в применении системного подхода проектирования моделей данных, создании некоей универсальной информационной модели и соответствующих протоколов обмена данными.

Интеграция технологий в информационных системах подразумевает не простое суммирование известных технологических процессов и решений, а получение оптимальных технологических решений обработки информации на основе известных методов и разработки новых, ранее не встречавшихся технологий. Разработка автоматизированной информационной технологии на базе существовавшей неавтоматизированной технологии в подавляющем большинстве случаев оказывается нерентабельной и неэффективной. Элемент новизны, как правило, определяет и эффективность новой автоматизированной технологии.

Для анализа обобщенной ГИС дадим основные понятия иерархии информационной интегрированной системы.

Верхним уровнем понятий является интегрированная система -- независимый комплекс, в котором выполняются все процессы обработки, обмена и представления информации.

Схема системы включает в себя системные уровни, подсистемы, процессы, задачи. Система может быть полной и неполной (Цветков, 1998).

Полной считается та система, которая в процессе работы осуществляет технологический цикл, включающий следующие процессы:

  • * ввод (или возможность ввода) всех видов информации данной предметной области для решения задач, поставленных перед системой;
  • * обработку информации с привлечением набора существующих средств, применяемых для решения данного класса задач;
  • * вывод или представление данных в формах вывода согласно заданию без использования других систем.

Неполной называют систему, которая осуществляет частичную обработку данных, частичный ввод данных или использует другие системы в процессе обработки.

Более низким уровнем по отношению к системе является системный уровень. Этим термином определим часть системы, объединяющую подсистемы и процессы обработки по функциональным и технологическим признакам. Системный уровень может включать от одной до нескольких подсистем.

Подсистему определяют как часть системы, объединенную по функциональным методам обработки данных, включающим разные алгоритмы и способы моделирования. Подсистема может быть локальной или распределенной.

Распределенной считают подсистему, состоящую из фрагментов, которые располагаются на различных узлах сети компьютеров, возможно, управляются различными системами и допускают участие в работе нескольких пользователей из разных узлов сети.

В отличие от распределенной локальная подсистема сгруппирована в одной точке сети и, как правило, обслуживается одним пользователем.

В подсистему входит процесс обработки данных -- совокупность методов, обеспечивающих реализацию алгоритма обработки или одного метода моделирования, решающего одну или несколько задач обработки данных. Он подразделяется на локальный, системный, распределенный.

Значение терминов локальный и распределенный аналогично значению их для подсистем. Системный процесс предназначен для обслуживания системы; как правило, он является про3рачным (т.е. незаметным) для пользователя.

Задача как элемент системы определяется простейшим циклом об работки типизированных данных. В этом контексте задача может быть связана с алгоритмами обработки (с вычислениями) или технологическими процессами, не связанными с вычислениями типа ввода данных, формирования данных, визуального контроля данных, функционирования автоматизированных датчиков или устройств и т.п. Рассмотренные понятия относятся к элементам системы (ГИС) (Цветков, 1998).

Системный подход позволяет в равной степени анализировать как системы, так и процессы. Поэтому для интегрированных процессов об работки данных (в ГИС) иерархия понятий аналогично рассмотренной выше для систем будет выглядеть так:

  • * интегрированный процесс;
  • * системный уровень обработки;
  • * блок процессов;
  • * процесс;
  • * класс задач;
  • * задача.

Следует подчеркнуть разницу между системным уровнем и подсистемой. Подсистема имеет всегда технологическое назначение, логическое описание и физическую реализацию. Так, подсистема семантического моделирования может быть реализована как составная часть технологии сбора информации или как самостоятельная технология, на пример, при формировании графических моделей (Цветков, 1998).

Системный уровень является описательным понятием, т.е. имеет технологическое назначение и может иметь (а может и не иметь) логическое описание.

Физическая реализация осуществляется обычно на уровне подсистемы. Определение основополагающих принципов функционирования любой автоматизированной системы (в том числе ГИС), достижение ее целостности, оптимизация структуры осуществляются на основе методов системного анализа.

Анализ, выполненный с использованием методов формализации общей теории систем, будет отвечать требованиям целостности и единства рассматриваемых проблем и задач, позволит определить структуру обобщенной ГИС и минимальные требования, которым должна удовлетворять такая система (Цветков, 1998).